RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2009 Volume 200, Number 1, Pages 137–160 (Mi sm4877)

This article is cited in 12 papers

The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$

I. I. Sharapudinovab

a Daghestan Scientific Centre of the Russian Academy of Sciences
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences

Abstract: The paper looks at the problem of determining the conditions on a variable exponent $p=p(x)$ so that the orthonormal system of Legendre polynomials $\{\widehat P_n(x)\}_{n=0}^\infty$ is a basis in the Lebesgue space $L^{p(x)}(-1,1)$ with norm
$$ \|f\|_{p(\,\cdot\,)}=\inf\biggl\{\alpha>0: \int_{-1}^1\biggl|{\frac{f(x)}{\alpha}}\biggr|^{p(x)}\,dx \le1\biggr\}. $$
Conditions on the exponent $p=p(x)$, that are definitive in a certain sense, are obtained and guarantee that the system $\{\widehat P_n(x)\}_{n=0}^\infty$ has the basis property in $L^{p(x)}(-1,1)$.
Bibliography: 31 titles.

Keywords: Lebesgue space, variable exponent, Legendre polynomial, basis.

UDC: 517.518.34

MSC: Primary 33A45; Secondary 42C10, 46E30

Received: 17.03.2008 and 30.11.2008

DOI: 10.4213/sm4877


 English version:
Sbornik: Mathematics, 2009, 200:1, 133–156

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024