RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 11, Pages 3–20 (Mi sm496)

This article is cited in 5 papers

Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates

O. S. Dragoshanskii

M. V. Lomonosov Moscow State University

Abstract: Let $f(\xi,\eta)$ be a function vanishing for $\xi^2+\eta^2>r^2$, where $r$ is sufficiently small, and with Fourier series (of the function considered in the square $(-\pi,\pi]^2$) or Fourier integral (of the function considered in the plane $\mathbb R^2$) convergent uniformly or almost everywhere over rectangles. It is shown that a rotation of the system of coordinates through $\pi/4$
$$ \begin{cases} \xi=(x-y)/\sqrt 2\,, \\ \eta=(y+x)/\sqrt 2 \end{cases} $$
can “damage” the convergence of the Fourier series or the Fourier integral of the resulting function.

UDC: 517.51

MSC: 42B08, 42B10

Received: 10.01.2000

DOI: 10.4213/sm496


 English version:
Sbornik: Mathematics, 2000, 191:11, 1587–1606

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025