RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 8, Pages 45–68 (Mi sm498)

This article is cited in 5 papers

Parametric excitation of high-mode oscillations for a non-linear telegraph equation

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University

Abstract: The problem of parametric excitation of high-mode oscillations is solved for a non-linear telegraph equation with a parametric external excitation and small diffusion. The equation is considered on a finite (spatial) interval with Neumann boundary conditions. It is shown that under a proper choice of parameters of the external excitation this boundary-value problem can have arbitrarily many exponentially stable solutions that are periodic in time and rapidly oscillate with respect to the spatial variable.

UDC: 517.926

MSC: 35B10, 35B35, 35B40

Received: 08.12.1999

DOI: 10.4213/sm498


 English version:
Sbornik: Mathematics, 2000, 191:8, 1147–1169

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024