RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 8, Pages 69–88 (Mi sm499)

This article is cited in 20 papers

Deformations of classical Lie algebras

M. I. Kuznetsov, N. G. Chebochko

N. I. Lobachevski State University of Nizhni Novgorod

Abstract: For a classical Lie algebra $L$ of characteristic $p>2$ and different from $C_2$ it is proved that $H^2(L,L)=0$ when $p=3$. A classical Lie algebra is understood to be the Lie algebra of a simple algebraic group, or its quotient algebra by the centre, or a Lie algebra $A_l^z$ with $l+1\equiv 0(p)$ or $E_6^z$ when $p=3$.

UDC: 512.554.31

MSC: Primary 17B56, 17B70, 17B20; Secondary 17B10

Received: 21.10.1999

DOI: 10.4213/sm499


 English version:
Sbornik: Mathematics, 2000, 191:8, 1171–1190

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024