RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2001 Volume 192, Number 1, Pages 67–88 (Mi sm536)

This article is cited in 1 paper

Type number and rigidity of fibred surfaces

P. E. Markov

Rostov State University

Abstract: Infinitesimal $l$-th order bendings, $1\leqslant l\leqslant\infty$, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for $l=\infty$ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the $(r,l)$-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an $(r,l)$-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number $\geqslant 3$ and the class of $(r,l)$-rigid fibred surfaces is distinguished.

UDC: 513.7

MSC: 53C45, 53C42

Received: 11.11.1999

DOI: 10.4213/sm536


 English version:
Sbornik: Mathematics, 2001, 192:1, 65–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025