RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2001 Volume 192, Number 11, Pages 3–34 (Mi sm607)

This article is cited in 6 papers

Infinite iterated power with alternating coefficients

A. P. Bulanov

Obninsk State Technical University for Nuclear Power Engineering

Abstract: Let
$$ f(z)=z^{\beta\cdot z^{z^{\beta\cdot z^{z^{\beta\cdot z^{\dotsb}}}}}} $$
where $\beta\in\mathbb C$ and $|\beta|>1$, be an infinite iterated power. Then $f(z)$ is a holomorphic function in some domain $U\supset e^K\cap\{z:|{\arg z}|<\pi\}$, where $e^K$ is the image of the disc $K=\{w:|w|<R\}$ of radius defined by the formula $1/R=\sqrt{|\beta|}\cdot\exp((1+t^2)/(1-t^2))$ and $t=t(\sqrt{|\beta|}\,)\in[0,1)$ is the solution of the equation $\sqrt{|\beta|}=\dfrac{1+t}{1-t}\cdot\exp(2t/(1-t^2))$.

UDC: 517.521.2+517.537

MSC: 40A30, 30B99

Received: 06.07.2000 and 07.09.2001

DOI: 10.4213/sm607


 English version:
Sbornik: Mathematics, 2001, 192:11, 1589–1620

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024