RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2001 Volume 192, Number 11, Pages 137–156 (Mi sm613)

This article is cited in 2 papers

A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: A necessary condition for the uniform minimality of a system of weighted exponentials
$$ \exp(-i\lambda_nt-a|t|^\alpha), \qquad a>0, \quad \alpha >1, $$
is obtained in the spaces $L^p$ $(1\leqslant p<\infty)$ and $C_0$ on the real line and the half-line. This condition is stated in terms of the indicator of the entire function of order $\beta=\alpha/(\alpha-1)$ with zero set coinciding with the sequence $\lambda_n$. This condition is used to show that there are no bases among the known complete minimal systems of this form in the above-indicated spaces.

UDC: 517.5

MSC: Primary 42C30; Secondary 30D20

Received: 04.04.2001

DOI: 10.4213/sm613


 English version:
Sbornik: Mathematics, 2001, 192:11, 1721–1740

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024