RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 1, Pages 73–82 (Mi sm620)

This article is cited in 6 papers

$k$-Regular maps into Euclidean spaces and the Borsuk–Boltyanskii problem

S. A. Bogatyi

M. V. Lomonosov Moscow State University

Abstract: The Borsuk–Boltyanskii problem is solved for odd $k$, that is, the minimum dimension of a Euclidean space is determined into which any $n$-dimensional polyhedron (compactum) can be $k$-regularly embedded. A new lower bound is obtained for even $k$.

UDC: 515.127.15

MSC: Primary 54C25; Secondary 54C15, 54B10

Received: 27.09.2000

DOI: 10.4213/sm620


 English version:
Sbornik: Mathematics, 2002, 193:1, 73–82

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025