RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 12, Pages 79–116 (Mi sm6372)

This article is cited in 10 papers

$C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into $\mathbb R^N$

P. V. Paramonov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: If $D$ is a Lyapunov-Dini domain in $\mathbb R^N$, $N\in\{2,3,\dots\}$, the possibility of $C^1$-extension and $C^1$-reflection of subharmonic functions in $D$ lying in the class $C^1(\overline D)$ across the boundary of $D$ to the whole of $\mathbb R^N$ is investigated. In particular, it is shown that extensions and reflections of this kind are always possible for an arbitrary Lyapunov domain with connected complement.
Bibliography: 14 titles.

UDC: 517.57

MSC: 31B05

Received: 28.05.2008 and 25.08.2008

DOI: 10.4213/sm6372


 English version:
Sbornik: Mathematics, 2008, 199:12, 1809–1846

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024