RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2009 Volume 200, Number 9, Pages 41–80 (Mi sm6374)

This article is cited in 12 papers

On the multiplicative and $T$-space structure of the relatively free Grassmann algebra

A. V. Grishin, L. M. Tsybulya

Moscow State Pedagogical University

Abstract: We investigate the multiplicative and $T$-space structure of the relatively free algebra $F^{(3)}$ with unity corresponding to the identity $[[x_1,x_2],x_3]=0$ over an infinite field of characteristic $p>0$. One of the basic results is the decomposition of quotient $T$-spaces connected with $F^{(3)}$ into a direct sum of simple components. Also, the $T$-spaces under consideration are commutative subalgebras of $F^{(3)}$; thus, the structure of $F^{(3)}$ and its subalgebras is described as modules over these commutative subalgebras. Finally, we consider the specifics of the case $p=2$.
Bibliography: 15 titles.

Keywords: $T$-space, $T$-ideal, $n$-word, canonical basis, relatively free Grassmann algebra.

UDC: 512.552

MSC: 16R10

Received: 10.06.2008 and 13.04.2009

DOI: 10.4213/sm6374


 English version:
Sbornik: Mathematics, 2009, 200:9, 1299–1338

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025