RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2010 Volume 201, Number 2, Pages 79–94 (Mi sm6386)

This article is cited in 3 papers

Codimensions of generalized polynomial identities

A. S. Gordienko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It is proved that for every finite-dimensional associative algebra $A$ over a field of characteristic zero there are numbers $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $gc_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=PI\exp(A)\in\mathbb Z_+$. Thus, Amitsur's and Regev's conjectures hold for the codimensions $gc_n(A)$ of the generalized polynomial identities.
Bibliography: 6 titles.

Keywords: associative algebra, generalized polynomial identity, asymptotic behaviour of codimensions, $PI$-exponent, representation of a symmetric group.

UDC: 512.552.4

MSC: Primary 16R50; Secondary 16R10, 20C30

Received: 25.06.2008 and 10.07.2009

DOI: 10.4213/sm6386


 English version:
Sbornik: Mathematics, 2010, 201:2, 235–251

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025