RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 5, Pages 149–160 (Mi sm656)

This article is cited in 22 papers

Total log canonical thresholds and generalized Eckardt points

I. A. Cheltsova, J. Parkb

a University of Liverpool
b University of Georgia

Abstract: Let $X$ be a smooth hypersurface of degree $n\geqslant 3$ in ${\mathbb P}^n$. It is proved that the log canonical threshold of an arbitrary hyperplane section $H$ of it is at least $(n-1)/n$. Under the assumption of the log minimal model program it is also proved that the log canonical threshold of $H\subset X$ is $(n-1)/n$ if and only if $H$ is a cone in ${\mathbb P}^{n-1}$ over a smooth hypersurface of degree $n$ in ${\mathbb P}^{n-2}$.

UDC: 513.6

MSC: 14J17

Received: 31.05.2001

DOI: 10.4213/sm656


 English version:
Sbornik: Mathematics, 2002, 193:5, 779–789

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024