RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 9, Pages 41–62 (Mi sm678)

This article is cited in 2 papers

On sets of convergence and divergence of multiple orthogonal series

M. I. Dyachenkoa, K. S. Kazarianb

a M. V. Lomonosov Moscow State University
b Universidad Autonoma de Madrid

Abstract: Multiple Fourier series with respect to uniformly bounded orthonormal systems (ONSs) are studied. The following results are obtained.
\medskip Theorem 1. \textit{Let $\Phi=\{\varphi_n(x)\}_{n=1}^\infty$ be a complete orthonormal system on $[0,1]$ that is uniformly bounded by $M$ on this interval, assume that $m\geqslant2$, and let $\Phi(m)=\{\varphi_{\mathbf n}(\mathbf x)\}_{\mathbf n \in\mathbb N^m}$, where $\varphi_{\mathbf n}(\mathbf n) =\varphi_{n_1}(x_1)\dotsb\varphi_{n_m}(x_m)$. Then there exists a function $f(\mathbf x)\in L([0,1]^m)$ cubically diverges on some measurable subset $\mathscr H$ of $[0,1]^m$ with $\mu_m(\mathscr H)\geqslant 1-(1-1/M^2)^m$. }
\medskip Theorem 3. For $M>1$ and an integer $m\geqslant 2$ let $E$ be an arbitrary measurable subset of $[0,1]$ such that $\mu(E)=1-1/M^2$. Then there exists a complete orthonormal system $\Phi$ on $[0,1]$ uniformly bounded by $M$ there such that the multiple Fourier series of each function $f(\mathbf x)\in L([0,1]^m)$ with respect to the product system $\Phi(m)$ cubically converges to $f(\mathbf x)$ a.e. on $E^m$.
\medskip Definitive results in this direction are established also for incomplete uniformly bounded ONSs.

UDC: 517.51

MSC: Primary 42B08, 42C15; Secondary 40B05, 40A30

Received: 26.02.2002

DOI: 10.4213/sm678


 English version:
Sbornik: Mathematics, 2002, 193:9, 1281–1301

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024