RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2002 Volume 193, Number 9, Pages 63–92 (Mi sm679)

This article is cited in 7 papers

Padé approximants for entire functions with regularly decreasing Taylor coefficients

V. N. Rusak, A. P. Starovoitov

Belarusian State University

Abstract: For a class of entire functions the asymptotic behaviour of the Hadamard determinants $D_{n,m}$ as $0\leqslant m\leqslant m(n)\to\infty$ and $n\to\infty$ is described. This enables one to study the behaviour of parabolic sequences from Padé and Chebyshev tables for many individual entire functions. The central result of the paper is as follows: for some sequences $\{(n,m(n))\}$ in certain classes of entire functions (with regular Taylor coefficients) the Padé approximants $\{\pi_{n,m(n)}\}$, which provide the locally best possible rational approximations, converge to the given function uniformly on the compact set $D=\{z:|z|\leqslant 1\}$ with asymptotically best rate.

UDC: 517.51+517.53

MSC: Primary 41A21, 41A20; Secondary 30D15

Received: 28.09.2001 and 27.05.2002

DOI: 10.4213/sm679


 English version:
Sbornik: Mathematics, 2002, 193:9, 1303–1332

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025