RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 1, Pages 119–130 (Mi sm7)

This article is cited in 6 papers

Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$

A. A. Pekarskii, H. Stahl

Yanka Kupala State University of Grodno

Abstract: It is shown that if $r$ is a rational function of degree $n$, $0<p<1$, $1/p\notin\mathbb N$, and $r\in L_p(-1,1)$, then for any $s\in\mathbb N$
\begin{equation} \biggl(\int _{-1}^1|r^{(s)}(x)|^\sigma\,dx\biggr)^{1/\sigma} \leqslant cn^s\biggr(\int _{-1}^1|r(x)|^p\,dx\biggr)^{1/p}, \tag{1} \end{equation}
where $\sigma =(s+1/p)^{-1}$ and $c>0$ depends only on $p$ and $s$.
The problem of proving the inequality (1) was posed by Sevast'yanov in 1973. Up to the present, it has been solved for $1<p\leqslant\infty$. In the case $1/p\in\mathbb N$ the inequality is not valid. Some applications of (1) to problems of rational approximation are also given in this paper. Similar questions are considered for the line and circle.

UDC: 517.53

MSC: Primary 41A17, 41A20, 30E10; Secondary 30D55

Received: 26.11.1993


 English version:
Sbornik: Mathematics, 1995, 186:1, 121–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025