RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 3, Pages 115–148 (Mi sm723)

This article is cited in 21 papers

Mixed series in ultraspherical polynomials and their approximation properties

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences

Abstract: New (mixed) series in ultraspherical polynomials $P_n^{\alpha,\alpha}(x)$ are introduced. The basic difference between a mixed series in the polynomials $P_n^{\alpha,\alpha}(x)$ and a Fourier series in the same polynomials is as follows: a mixed series contains terms of the form $\dfrac{2^rf_{r,k}^\alpha}{(k+2\alpha)^{[r]}}P_{k+r}^{\alpha-r,\alpha-r}(x)$, where $1\leqslant r$ is an integer and $f_{r,k}^\alpha$ is the $k$ th Fourier coefficient of the derivative $f^{(r)}(x)$ with respect to the ultraspherical polynomials $P_k^{\alpha,\alpha}(x)$. It is shown that the partial sums ${\mathscr Y}_{n+2r}^\alpha(f,x)$ of a mixed series in the polynomial $P_k^{\alpha,\alpha}(x)$ contrast favourably with Fourier sums $S_n^\alpha(f,x)$ in the same polynomials as regards their approximation properties in classes of differentiable and analytic functions, and also in classes of functions of variable smoothness. In particular, the ${\mathscr Y}_{n+2r}^\alpha(f,x)$ can be used for the simultaneous approximation of a function $f(x)$ and its derivatives of orders up to $(r- 1)$, whereas the $S_n^\alpha(f,x)$ are not suitable for this purpose.

UDC: 517.5

MSC: 41A58, 42C10

Received: 25.10.2001 and 12.11.2002

DOI: 10.4213/sm723


 English version:
Sbornik: Mathematics, 2003, 194:3, 423–456

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024