RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 4, Pages 29–48 (Mi sm726)

This article is cited in 8 papers

Isoperimetric inequality on conformally hyperbolic manifolds

V. M. Kesel'man

Moscow State Industrial University

Abstract: It is shown that on an arbitrary non-compact Riemannian manifold of conformally hyperbolic type the isoperimetric inequality can be taken by a conformal change of the metric to the same canonical linear form as in the case of the standard hyperbolic Lobachevskii space. Both the absolute isoperimetric inequality and the relative one (for manifolds with boundary) are obtained.
This work develops the results and methods of a joint paper with Zorich, in which the absolute isoperimetric inequality was obtained under a certain additional condition; the resulting statements are definitive in a certain sense.

UDC: 517.54+514.774

MSC: 53A30, 53C20

Received: 08.04.2002 and 04.02.2003

DOI: 10.4213/sm726


 English version:
Sbornik: Mathematics, 2003, 194:4, 495–513

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025