RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 4, Pages 49–74 (Mi sm727)

This article is cited in 22 papers

Rayleigh triangles and non-matrix interpolation of matrix beta integrals

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: A Rayleigh triangle of size $n$ is a set of $n(n+1)/2$ real numbers $\lambda_{kl}$, where $1\leqslant l\leqslant k\leqslant n$, which are decreasing as $k$ increases for fixed $k$ and are increasing as $k$ increases for fixed $k-l$. We construct a family of beta integrals over the space of Rayleigh triangles which interpolate matrix integrals of the types of Siegel, Hua Loo Keng, and Gindikin with respect to the dimension of the ground field ($\mathbb R$$\mathbb C$, or the quaternions $\mathbb H$). We also interpolate the Hua–Pickrell measures on the inverse limits of the symmetric spaces $\operatorname U(n)$, $\operatorname U(n)/\operatorname O(n)$, $\operatorname U(2n)/\operatorname{Sp}(n)$.
Our family of integrals also includes the Selberg integral.

UDC: 519.46

MSC: Primary 22E30, 43A85; Secondary 33C67, 43A80, 44A15

Received: 08.07.2002

DOI: 10.4213/sm727


 English version:
Sbornik: Mathematics, 2003, 194:4, 515–540

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024