RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2009 Volume 200, Number 4, Pages 3–30 (Mi sm7298)

This article is cited in 7 papers

Trajectory attractors of reaction-diffusion systems with small diffusion

M. I. Vishik, V. V. Chepyzhov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: We consider a reaction-diffusion system of two equations, where one equation has a small diffusion coefficient $\delta>0$. We construct the trajectory attractor $\mathfrak A^\delta$ of such a system. We also study the limit system for $\delta=0$. In this system one equation is an ordinary differential equation in $t$, but is considered in the domain $\Omega\times\mathbb R_+$, where $\Omega\Subset\mathbb R^n$ and $\mathbb R_+$ is the positive time axis, $t$. We construct the trajectory attractor $\mathfrak A^0$ of the limit system. The main result is a convergence theorem: $\mathfrak A^\delta\to\mathfrak A^0$ as $\delta\to0^+$ in the corresponding topology.
Bibliography: 18 titles.

Keywords: trajectory attractor, reaction-diffusion equations.

UDC: 517.956.4

MSC: 35K57, 35B41

Received: 09.09.2008

DOI: 10.4213/sm7298


 English version:
Sbornik: Mathematics, 2009, 200:4, 471–497

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025