RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 5, Pages 3–30 (Mi sm733)

This article is cited in 5 papers

The defining boundary conditions and the degenerate problem for elliptic boundary-value problems with a small parameter in the highest derivatives

S. A. Golopuz

Vladimir State University

Abstract: For an elliptic equation with a small parameter multiplying the highest derivatives one considers a boundary-value problem such that some of the orders of the last $p$ boundary conditions are congruent modulo $2p$ (here $2p$ is the difference between the orders of the perturbed and the non-perturbed equations). In the case when no three of them are congruent modulo $2p$, associated boundary conditions are obtained and results on the asymptotic expansion are established.

UDC: 517.956

MSC: Primary 35B25; Secondary 35J55

Received: 04.06.2002

DOI: 10.4213/sm733


 English version:
Sbornik: Mathematics, 2003, 194:5, 641–668

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025