RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 6, Pages 3–22 (Mi sm739)

This article is cited in 2 papers

On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates

B. P. Andreianov

University of Franche-Comté

Abstract: For the problem $\rho_t+(\rho u)_x=0$, $(\rho u)_t+(\rho u^2+p(\rho))_x=0$, $(\rho,u)\big|_{t=0,\,x<0}=(\rho_-,u_-)$, $(\rho,u)\big|_{t=0,\,x>0}=(\rho_+,u_+)$ one shows the existence and uniqueness of a solution obtainable as a limit as $\varepsilon$ tends to zero of the bounded self-similar solutions of the regularized problem with additional viscosity term $\varepsilon tu_{xx}$, $\varepsilon>0$, in the second equation. The structure of the solutions is described in detail, in particular, when they contain vacuum states.

UDC: 517.956.35

MSC: 76N15, 35L40

Received: 22.11.2001 and 09.10.2002

DOI: 10.4213/sm739


 English version:
Sbornik: Mathematics, 2003, 194:6, 793–811

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024