RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 4, Pages 103–118 (Mi sm7578)

This article is cited in 1 paper

An inverse theorem on ‘economic’ maps

S. I. Bogatayaa, S. A. Bogatyib, E. A. Kudryavtsevab

a National Research University "Higher School of Economics"
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove that the bound from the theorem on ‘economic’ maps is best possible. Namely, for $m>n+d$ we construct a map from an $n$-dimensional simplex to an $m$-dimensional Euclidean space for which (and for any close map) there exists a $d$-dimensional plane whose preimage has cardinality not less than the upper bound $\lceil(dn+n+1)/(m-n-d)\rceil+d$ from the theorem on ‘economic’ maps.
Bibliography: 16 titles.

Keywords: embedding, Euclidean space, cardinality of the preimage of a plane.

UDC: 515.127.15

MSC: 54F45

Received: 15.05.2009 and 09.09.2011

DOI: 10.4213/sm7578


 English version:
Sbornik: Mathematics, 2012, 203:4, 554–568

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025