RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 10, Pages 31–40 (Mi sm76)

This article is cited in 2 papers

Homology reduction of cycles in the complement of an algebraic hypersurface

N. A. Buruchenko, A. K. Tsikh

Krasnoyarsk State University

Abstract: An example of a 3-dimensional cycle in the complement of an algebraic hypersurface $V\subset\mathbb C^3$ that cannot be deformed into a tube over (is not homologous to the coboundary of) a 2-dimensional cycle in the set of regular points of $V$ is presented. Thus, the corresponding result of Poincare in $\mathbb C^2$ fails in $\mathbb C^n$ for $n>2$. It is proved that Poincare's result holds for hypersurfaces in $\mathbb C^n$ with a 'thin' set of singularities that are complete intersections.

UDC: 517.55

MSC: Primary 32B15; Secondary 32A27, 14B99, 14M10

Received: 23.01.1995


 English version:
Sbornik: Mathematics, 1995, 186:10, 1417–1427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024