RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 9, Pages 121–134 (Mi sm7714)

This article is cited in 1 paper

Nonzero bounded solutions of one class of nonlinear ordinary differential equations

È. M. Muhamadiev, A. N. Naimov

Vologda State Technical University

Abstract: The paper is concerned with an ordinary differential equation of the form
\begin{equation} -\psi''(x)+\biggl(1+\frac c{x^2}\biggr)\psi(x)= \frac1{x^\alpha}|\psi(x)|^{k-1}\psi(x), \qquad x>0, \tag{1} \end{equation}
where $k$ and $\alpha$ are positive parameters, $k>1$, and $c$ is a constant, subject to the boundary condition
\begin{equation} \psi(0)=0, \qquad \psi(+\infty)=0. \tag{2} \end{equation}
A variational approach based on finding the eigenvalues of the gradient of the functional $F_{k,\alpha}(f)=\displaystyle\int_0^{+\infty}|f(s)|^{k+1}s^{-\alpha}\,ds$ acting on the space of absolutely continuous functions $H_0^1=\{f:f,f'\in L_2(0,+\infty), f(0)=0\}$ is used to show that if $c>-1/4$, $k>1$, $0<2\alpha<k+3$, then problem $(1)$$(2)$ has a countable number of nonzero solutions, at least one of which is positive. For nonzero solutions, asymptotic formulae as $x\to0$ and $x\to+\infty$ are obtained.
Bibliography: 7 titles.

Keywords: differential equation, function space, weakly continuous functional, eigenfunction of the gradient of a functional.

UDC: 517.927.4+517.988.3

MSC: Primary Primary 34B15; Secondary 34A26, 34A34, 34E10, 46N20

Received: 17.03.2010 and 01.12.2010

DOI: 10.4213/sm7714


 English version:
Sbornik: Mathematics, 2011, 202:9, 1373–1386

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025