RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 7, Pages 3–42 (Mi sm7739)

This article is cited in 17 papers

Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials

A. I. Bufetovab, B. M. Gurevichcd

a Steklov Mathematical Institute, Russian Academy of Sciences
b Department of Mathematics, Rice University, Houston, TX, USA
c M. V. Lomonosov Moscow State University
d A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: The main result of the paper is the statement that the ‘smooth’ measure of Masur and Veech is the unique measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. The proof is based on the symbolic representation of the flow in Veech's space of zippered rectangles.
Bibliography: 29 titles.

Keywords: moduli space, Rauzy induction, symbolic dynamics, Markov shift, suspension flow.

UDC: 517.938

MSC: 28D20, 37A35, 37D, 37E35

Received: 13.05.2010 and 21.11.2010

DOI: 10.4213/sm7739


 English version:
Sbornik: Mathematics, 2011, 202:7, 935–970

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025