RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 9, Pages 77–96 (Mi sm7742)

This article is cited in 3 papers

Direct and inverse theorems of rational approximation in the Bergman space

T. S. Mardvilkoa, A. A. Pekarskiib

a Belarussian State University of Computer Science and Radioelectronic Engineering
b Belarusian State University, Minsk

Abstract: For positive numbers $p$ and $\mu$ let $A_{p,\mu}$ denote the Bergman space of analytic functions in the half-plane $\Pi:=\{z\in\mathbb C:\operatorname{Im} z>0\}$. For $f\in A_{p,\mu}$ let $R_n (f)_{p,\mu}$ be the best approximation by rational functions of degree at most $n$. Also let $\alpha\in\mathbb R$ and $\tau>0$ be numbers such that $\alpha+\mu=\frac{1}{\tau}-\frac{1}{p}>0$ and $\frac{1}{p}+\mu\notin\mathbb N$. Then the main result of the paper claims that the set of functions $f\in A_{p,\mu}$ such that
$$ \sum_{n=1}^\infty\frac{1}{n}(n^{\alpha+\mu} R_n (f)_{p,\mu})^\tau<\infty $$
is precisely the Besov space $B_\tau^\alpha$ of analytic functions in $\Pi$.
Bibliography: 23 titles.

Keywords: direct and inverse theorems of rational approximation, Bernstein-type inequalities, Jackson-type inequalities, Bergman spaces, Besov spaces.

UDC: 517.538.52

MSC: 30E10, 30H20, 30H25

Received: 17.05.2010

DOI: 10.4213/sm7742


 English version:
Sbornik: Mathematics, 2011, 202:9, 1327–1346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025