RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2011 Volume 202, Number 9, Pages 135–160 (Mi sm7793)

This article is cited in 3 papers

Several versions of the compensated compactness principle

S. E. Pastukhovaa, A. S. Khripunovab

a Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
b Vladimir State Humanitarian University

Abstract: The convergence of the product of a solenoidal vector $w_\varepsilon$ and a gradient $\nabla u_\varepsilon$ in $L^1(\Omega)$ (where $\Omega$ is a region in $\mathbb R^d$) is investigated in the case when the factors converge weakly in the spaces $L^\gamma(\Omega)^d$ and $L^\alpha(\Omega)^d$, respectively, with $1/\gamma+1/\alpha>1$, which means that the main assumption of the classical $div$-$curl$ lemma fails. Nevertheless, the same convergence (in the sense of distributions in $\Omega$)
$$ \lim_{\varepsilon\to0}w_\varepsilon\cdot\nabla u_\varepsilon =\lim_{\varepsilon\to0}w_\varepsilon\cdot\lim_{\varepsilon\to0} \nabla u_\varepsilon=w\cdot\nabla u $$
as in the framework of the $div$-$curl$ lemma, survives under certain additional assumptions.
The new versions of the compensated compactness principle proved in the paper can be used in homogenization and in the theory of $G$-convergence of monotone operators with non-standard coercivity and growth properties, for instance, some degenerate operators.
Bibliography: 20 titles.

UDC: 517.956.4

MSC: Primary 46E40; Secondary 49J45

Received: 29.09.2010 and 14.01.2011

DOI: 10.4213/sm7793


 English version:
Sbornik: Mathematics, 2011, 202:9, 1387–1412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025