RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 6, Pages 81–100 (Mi sm7857)

This article is cited in 33 papers

On additive shifts of multiplicative subgroups

I. V. Vyugina, I. D. Shkredovbc

a Institute for Information Transmission Problems, Russian Academy of Sciences
b Steklov Mathematical Institute, Russian Academy of Sciences
c Laboratory of Discrete and Computational Geometry named after B. N. Delone of P. G. Demidov Yaroslavl State University

Abstract: It is proved that for an arbitrary subgroup $R\subseteq\mathbb Z/p\mathbb Z$ and any distinct nonzero elements $\mu_1,\dots,\mu_k$ we have
$$ \bigl|R\cap(R+\mu_1)\cap\dots\cap(R+\mu_k)\bigr| \ll_k|R|^{{1}/{2}+\alpha_k} $$
under the condition that $1\ll_k|R|\ll_kp^{1-\beta_k}$, where $\{\alpha_k\}$$\{\beta_k\}$ are some sequences of positive numbers such that $\alpha_k,\beta_k\to0$ as $k\to\infty$. Furthermore, it is shown that the inequality $|R\pm R|\gg|R|^{5/3}\log^{-1/2}|R|$ holds for any subgroup $R$ such that $|R|\ll p^{1/2}$.
Bibliography: 25 titles.

Keywords: multiplicative subgroups, Stepanov's method, additive combinatorics.

UDC: 511.218+511.336

MSC: Primary 11B75; Secondary 05B10, 11B13, 11T24

Received: 22.02.2011

DOI: 10.4213/sm7857


 English version:
Sbornik: Mathematics, 2012, 203:6, 844–863

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024