RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2003 Volume 194, Number 12, Pages 63–92 (Mi sm787)

This article is cited in 15 papers

Convergence of Chebyshëv continued fractions for elliptic functions

S. P. Suetin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Dumas's classical theorem on the behaviour of the Chebyshëv continued fraction corresponding to an elliptic function $f(z)=\sqrt{(z-e_1)\dotsb(z-e_4)}-z^2+z{(e_1+\dotsb+e_4)}/2$ holomorphic at $z=\infty$ is extended to a fairly general class of elliptic functions. The behaviour of the Chebyshëv continued fractions corresponding to functions in that class is characterized in terms relating to the mutual position of the branch points $e_1,\dots,e_4$. The proof is based on the investigation of the properties of the solution of a certain Riemann boundary-value problem on an elliptic Riemann surface.

UDC: 517.53

MSC: Primary 40A15, 4121; Secondary 14K20, 30B70, 34M50

Received: 12.03.2003

DOI: 10.4213/sm787


 English version:
Sbornik: Mathematics, 2003, 194:12, 1807–1835

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024