RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2012 Volume 203, Number 4, Pages 119–130 (Mi sm7903)

This article is cited in 16 papers

Best recovery of the Laplace operator of a function from incomplete spectral data

G. G. Magaril-Il'yaeva, E. O. Sivkovab

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)

Abstract: This paper is concerned with the problem of best recovery for a fractional power of the Laplacian of a smooth function on $\mathbb R^d$ from an exact or approximate Fourier transform for it, which is known on some convex subset of $\mathbb R^d$. A series of optimal recovery methods is constructed. Information about the Fourier transform outside some ball centred at the origin proves redundant — it is not used by the optimal methods. These optimal methods differ in the way they ‘process’ key information.
Bibliography: 12 titles.

Keywords: Laplace operator, optimal recovery, extremal problem, Fourier transform.

UDC: 517.518.1

MSC: 49N30, 35Q93

Received: 22.06.2011

DOI: 10.4213/sm7903


 English version:
Sbornik: Mathematics, 2012, 203:4, 569–580

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024