RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 3, Pages 47–68 (Mi sm808)

This article is cited in 8 papers

On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$

A. A. Makhnev, V. V. Nosov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: The structure of fixed-point subgraphs of automorphisms of order 3 of strongly regular graphs with parameters $(v,k,0, 2)$ is determined. Let $G$ be the automorphism group of a hypothetical strongly regular graph with parameters $(352, 26, 0, 2)$. Possible orders are found and the structure of fixed-point subgraphs is determined for elements of prime order in $G$. The four-subgroups of $G$ are classified and the possible structure of the group $G$ is determined. A strengthening of a result of Nakagawa on the automorphism groups of strongly regular graphs with $\lambda=0$, $\mu=2$ is obtained.

UDC: 519.14+512.54

MSC: Primary 05E30, 20B25; Secondary 05C25

Received: 28.02.2003

DOI: 10.4213/sm808


 English version:
Sbornik: Mathematics, 2004, 195:3, 347–367

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025