RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 8, Pages 83–116 (Mi sm8086)

This article is cited in 1 paper

On the boundary of the group of transformations leaving a measure quasi-invariant

Yu. A. Neretinabc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
c University of Vienna

Abstract: Let $A$ be a Lebesgue measure space. We interpret measures on $A\times A\times \mathbb R^\times$ as ‘maps’ from $A$ to $A$, which ‘spread’ $A$ along itself; their Radon-Nikodym derivatives are also spread. We discuss the basic properties of the semigroup of such maps and the action of this semigroup on the spaces $L^p(A)$.
Bibliography: 26 titles.

Keywords: Lebesgue space, Markov operator, polymorphism, characteristic function, spaces $L^p$.

UDC: 517.518.112+512.583+517.983.23

MSC: Primary 22F10, 28A35; Secondary 28A33

Received: 17.11.2011 and 04.02.2013

DOI: 10.4213/sm8086


 English version:
Sbornik: Mathematics, 2013, 204:8, 1161–1194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024