RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 11, Pages 21–40 (Mi sm8143)

This article is cited in 6 papers

Closeness to spheres of hypersurfaces with normal curvature bounded below

A. A. Borisenkoa, K. D. Drachb

a Sumy State University
b V. N. Karazin Kharkiv National University, Faculty of Mathematics and Mechanics

Abstract: For a Riemannian manifold $M^{n+1}$ and a compact domain $\Omega \subset\nobreak M^{n+1}$ bounded by a hypersurface $\partial\Omega$ with normal curvature bounded below, estimates are obtained in terms of the distance from $O$ to $\partial\Omega$ for the angle between the geodesic line joining a fixed interior point $O$ in $\Omega$ to a point on $\partial\Omega$ and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented.
Bibliography: 9 titles.

Keywords: Riemannian manifold, sectional curvature, normal curvature of a hypersurface, comparison theorems, $\lambda$-convex hypersurface.

UDC: 514.772

MSC: 53C20

Received: 24.05.2012 and 27.06.2013

DOI: 10.4213/sm8143


 English version:
Sbornik: Mathematics, 2013, 204:11, 1565–1583

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025