Abstract:
For a Riemannian manifold $M^{n+1}$ and a compact domain $\Omega \subset\nobreak M^{n+1}$ bounded by a hypersurface $\partial\Omega$ with normal curvature bounded below, estimates are obtained in terms of the distance from $O$ to $\partial\Omega$ for the angle between the geodesic line joining a fixed interior point $O$ in $\Omega$ to a point on $\partial\Omega$ and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented.
Bibliography: 9 titles.
Keywords:Riemannian manifold, sectional curvature, normal curvature of a hypersurface, comparison theorems, $\lambda$-convex hypersurface.