RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 6, Pages 3–20 (Mi sm819)

This article is cited in 5 papers

Classification of affine homogeneous spaces of complexity one

I. V. Arzhantsev, O. V. Chuvashova

M. V. Lomonosov Moscow State University

Abstract: The complexity of an action of a reductive algebraic group $G$ on an algebraic variety $X$ is the codimension of a generic $B$-orbit in $X$, where $B$ is a Borel subgroup of $G$. Affine homogeneous spaces $G/H$ of complexity 1 are classified in this paper. These results are the natural continuation of the earlier classification of spherical affine homogeneous spaces, that is, spaces of complexity 0.

UDC: 512.745

MSC: Primary 14M17, 14R20, 37J35; Secondary 22F30, 32M10, 53C30

Received: 06.03.2003 and 12.01.2004

DOI: 10.4213/sm819


 English version:
Sbornik: Mathematics, 2004, 195:6, 765–782

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024