RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2013 Volume 204, Number 7, Pages 97–126 (Mi sm8196)

This article is cited in 2 papers

Approximation of Müntz-Szász type in weighted spaces

A. M. Sedletskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper looks at whether a system of exponentials $\exp(-\lambda_nt)$, $\operatorname{Re}\lambda_n>0$, is complete in various function spaces on the half-line $\mathbb R_+$. Wide classes of Banach spaces $E$ and $F$ of functions on $\mathbb R_+$ are described such that this system is complete in $E$ and $F$ simultaneously. A test is established to determine when this system is complete in the weighted spaces $C_0$ and $L^p$ with weight $(1+t)^\alpha$ on $\mathbb R_+$, for $\alpha<0$ and $\alpha<-1$, respectively.
Bibliography: 18 titles.

Keywords: Müntz and Szász theorems, complete system of exponentials, spaces with combined norm, weighted spaces, Laplace transform.

UDC: 517.538.2

MSC: Primary 30B60; Secondary 46E15

Received: 26.11.2012 and 18.02.2013

DOI: 10.4213/sm8196


 English version:
Sbornik: Mathematics, 2013, 204:7, 1028–1055

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024