Abstract:
Some special classes of relaxation systems are introduced, with one slow and one fast variable, in which the evolution of the slow component $x(t)$ in time is described by an ordinary differential equation, while the evolution of the fast component $y(t)$ is described by a Volterra-type differential equation with delay $y(t-h)$, $h=\mathrm{const}>0$,
and with a small parameter $\varepsilon>0$ multiplying the time derivative. Questions relating to the existence and stability of impulse-type periodic solutions, in which the $x$-component converges pointwise to a discontinuous function as $\varepsilon\to 0$ and the $y$-component is shaped like a $\delta$-function, are investigated. The results obtained are illustrated by several examples from ecology and laser theory.
Bibliography: 11 titles.