This article is cited in
22 papers
Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
I. I. Sharapudinov Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
Abstract:
The paper deals with the space
$L^{p(x)}$ consisting of classes of real measurable functions
$f(x)$ on
$[0,1]$ with finite integral
$\displaystyle\int_0^1|f(x)|^{p(x)}\,dx$. If
$1\le p(x)\le \overline p<\infty$, then the space
$L^{p(x)}$ can be made into a Banach space with the norm $\displaystyle\|f\|_{p(\cdot)}=\inf\biggl\{\alpha\,{>}\,0: \int_0^1 |{f(x)/\alpha}|^{p(x)}\,dx\le\nobreak 1\biggr\}$. The inequality $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)\Omega(f,1/n)_{p(\cdot)}$, which is an analogue of the first Jackson theorem, is shown to hold for the finite Fourier-Haar series
$Q_n(f)$, provided that the variable exponent
$p(x)$ satisfies the condition
$|p(x)-p(y)|\ln(1/|x-y|)\le\nobreak c$. Here,
$\Omega(f,\delta)_{p(\cdot)}$ is the modulus of continuity in
$L^{p(x)}$
defined in terms of Steklov functions. If the function
$f(x)$ lies in the Sobolev space
$W_{p(\cdot)}^1$
with variable exponent
$p(x)$, it is shown that $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)/n\|f'\|_{p(\cdot)}$.
Methods for estimating the deviation
$|f(x)-Q_n(f,x)|$ for
$f(x) \in W_{p(\cdot)}^1$ at a given point
$x \in [0,1]$ are also examined. The value of
$\sup_{f\in W_{p}^1(1) }|f(x)-Q_n(f,x)|$ is calculated in the case
when
$p(x) \equiv p = \nobreak \mathrm{const}$, where $W_{p}^1(1)=\{f\in W_{p}^1:\|f'\|_{p(\cdot)}\le1\}$.
Bibliography: 17 titles.
Keywords:
variable-exponent Lebesgue and Sobolev spaces, approximation of functions by Fourier-Haar series.
UDC:
517.538
MSC: Primary
41A17; Secondary
42C10,
46E30,
46E35 Received: 29.07.2013 and 30.10.2013
DOI:
10.4213/sm8274