RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2014 Volume 205, Number 12, Pages 85–98 (Mi sm8305)

A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space

G. R. Yodgorova, F. Ismailb, Z. I. Muminovc

a Navoi State Pedagogical Institute
b Universiti Putra Malaysia
c Malaysia – Japan International Institute of Technology, Kuala Lumpur

Abstract: We consider a certain model operator acting in a subspace of a fermionic Fock space. We obtain an analogue of Faddeev's equation. We describe the location of the essential spectrum of the operator under consideration and show that the essential spectrum consists of the union of at most four segments.
Bibliography: 19 titles.

Keywords: Hamiltonian with a nonconserved bounded number of particles, creation–annihilation operators, essential spectrum, positive operator, Faddeev's equation, compact operator.

UDC: 517.984

MSC: Primary 35P20; Secondary 47N50, 81Q10, 81V70

Received: 19.11.2013 and 25.09.2014

DOI: 10.4213/sm8305


 English version:
Sbornik: Mathematics, 2014, 205:12, 1761–1774

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024