RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2014 Volume 205, Number 7, Pages 95–114 (Mi sm8324)

This article is cited in 4 papers

The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces

N. N. Osipov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in $L^p$, $2\le p<\infty$. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents $p$ `beyond the index $p=\infty$', that is, for spaces of Hölder functions and BMO.
Bibliography: 14 titles.

Keywords: $\mathrm{BMO}$ space, Calderón-Zygmund operators, Fourier multipliers, Hölder spaces, Lipschitz space.

UDC: 517.443+517.444

MSC: Primary 42B25; Secondary 46E15

Received: 07.01.2014

DOI: 10.4213/sm8324


 English version:
Sbornik: Mathematics, 2014, 205:7, 1004–1023

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025