RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 1, Pages 5–28 (Mi sm8345)

This article is cited in 1 paper

Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces

A. Boivina, P. M. Gauthierb, P. V. Paramonovc

a University of Western Ontario
b Université de Montréal
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper we study several settings of the $C^m$-subharmonic extension problem on open Riemann surfaces. The problem is completely solved (for all $m\in[0,+\infty)$) for so-called Runge-type extensions. Several (in some sense sharp) sufficient conditions and counterexamples are found also for Walsh-type extensions. As applications, these results allow us to prove the existence of $C^m$-subharmonic extensions, automorphic with respect to some appropriate groups of automorphisms of an open Riemann surface.
Bibliography: 22 titles.

Keywords: subharmonic function, Riemann surface, Green function, localization operator, automorphism group.

UDC: 517.574+517.545

MSC: 31A05, 30F99

Received: 11.02.2014 and 26.06.2014

DOI: 10.4213/sm8345


 English version:
Sbornik: Mathematics, 2015, 206:1, 3–23

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024