RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 7, Pages 105–126 (Mi sm836)

This article is cited in 25 papers

Newton's problem of the body of minimum mean resistance

A. Yu. Plakhov

University of Aveiro

Abstract: Consider a body $\Omega$ at rest in $d$-dimensional Euclidean space and a homogeneous flow of particles falling on it with unit velocity $v$. The particles do not interact and they collide with the body perfectly elastically. Let $\mathscr R_\Omega(v)$ be the resistance of the body to the flow. The problem of the body of minimum resistance, which goes back to Newton, consists in the minimization of the quantity $(\mathscr R_\Omega(v)\mid v)$ over a prescribed class of bodies.
Assume that one does not know in advance the direction $v$ of the flow or that one measures the resistance repeatedly for various directions of $v$. Of interest in these cases is the problem of the minimization of the mean value of the resistance $\widetilde{\mathscr R}(\Omega) =\displaystyle\int_{S^{d-1}}(\mathscr R_\Omega(v)\mid v)\,dv$. This problem is considered $(\widetilde{\mathrm{P}}_d)$ in the class of bodies of volume 1 and $(\widetilde{\mathrm{P}}{}_d^c)$ in the class of convex bodies of volume 1. The solution of the convex problem $\widetilde{\mathrm{P}}{}_d^c$ is the $d$-dimensional ball. For the non-convex 2-dimensional problem $\widetilde{\mathrm{P}}_2$ the minimum value $\widetilde{\mathscr R}(\Omega)$ is found with accuracy $0.61\%$. The proof of this estimate is carried out with the use of a result related to the Monge problem of mass transfer, which is also solved in this paper. This problem is as follows: find $\displaystyle\inf_{T\in\mathscr T}\int_\Pi\mathrm{f}(\varphi,\tau;T(\varphi,\tau))\,d\mu(\varphi,\tau)$, where $\Pi=[-{\pi}/{2},{\pi}/{2}]\times [0,1]$, $d\mu(\varphi,\tau)=\cos\varphi\,d\varphi\,d\tau$, $\mathrm{f}(\varphi,\tau;\varphi',\tau') =1+\cos(\varphi+\varphi')$, and $\mathscr T$ is the set of one-to-one maps of $\Pi$ onto itself preserving the measure $\mu$.
Another problem under study is the minimization of $\overline{\mathscr R}(\Omega) =\displaystyle\int_{S^{d-1}}|\mathscr R_\Omega(v)|\,dv$. The solution of the convex problem $\overline{\mathrm P}{}_d^c$ and the estimate for the non-convex 2-dimensional problem $\overline{\mathrm P}_2$ obtained in this paper are the same as for the problems $\widetilde{\mathrm P}{}_d^c$ and $\widetilde{\mathrm P}_2$.

UDC: 517.95

MSC: 49J10, 49Q10, 49Q20

Received: 11.11.2003

DOI: 10.4213/sm836


 English version:
Sbornik: Mathematics, 2004, 195:7, 1017–1037

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024