RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 4, Pages 35–66 (Mi sm8373)

This article is cited in 3 papers

Some properties of three-dimensional Klein polyhedra

A. A. Illarionov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: We study properties of three-dimensional Klein polyhedra. The main result is as follows. Let $\mathscr{L}_s(N)$ be the set of integer $s$-dimensional lattices with determinant $N$, and let $f'(\Gamma,k)$ be the set of edges $E$ of Klein polyhedra in the lattice $\Gamma$ satisfying $\#(\Gamma\cap E)=k+1$ (that is, the integer length of the edge $E$ is $k$). Then for any $k>1$,
$$ \frac{1}{\#\mathscr{L}_s(N)}\sum_{\Gamma\in\mathscr{L}_s(N)}f'(\Gamma,k)= C'_3(k)\cdot \ln^2 N+O_k(\ln N \cdot \ln\ln N), \qquad N\to \infty, $$
where $C'_3(k)$ is a positive constant depending only on $k$, and
$$ C'_3(k)=\frac{6}{\zeta(2)\zeta(3)}\cdot\frac{1}{k^3}+O\biggl(\frac{1}{k^4}\biggr). $$

Bibliography: 39 titles.

Keywords: lattice, Klein polyhedron, multidimensional continued fraction.

UDC: 511.36+511.9

MSC: 11H06, 11J70, 52C07

Received: 08.04.2014

DOI: 10.4213/sm8373


 English version:
Sbornik: Mathematics, 2015, 206:4, 510–539

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025