Abstract:
The value of the sharp constant $\varkappa$ in the Jackson type inequality in the space $L_2(\mathbb T^d)$ \begin{equation}
E_{n-1}(f)\leqslant\varkappa\overline\omega_\psi(f,T)
\end{equation}
is studied for the generalized modulus of continuity
$$
\overline\omega_\psi(f,T)=\max_{t\in T}\biggl(\sum_{s}\psi(st)|\widehat f_s|^2\biggr)^{1/2}.
$$
The value $\overset{*}{\varkappa}$ of the minimum sharp constant
in inequality (1) is found.
A class of generalized moduli of continuity is introduced which contains the moduli
$\widetilde\omega_{a,r}(f,\delta):=\sup_{0\leqslant t\leqslant\delta}\|\Delta_{a^{r-1}t}\dotsb
\Delta_{at}\Delta_{t}f\|_2$,
with even $a$.
The relation $\varkappa=\overset{*}\varkappa$ is proved in this class for all $\delta\geqslant\pi/n$.