RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 8, Pages 3–46 (Mi sm838)

This article is cited in 26 papers

On Jackson's inequality for a generalized modulus of continuity in $L_2$

A. I. Kozko, A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The value of the sharp constant $\varkappa$ in the Jackson type inequality in the space $L_2(\mathbb T^d)$
\begin{equation} E_{n-1}(f)\leqslant\varkappa\overline\omega_\psi(f,T) \end{equation}
is studied for the generalized modulus of continuity
$$ \overline\omega_\psi(f,T)=\max_{t\in T}\biggl(\sum_{s}\psi(st)|\widehat f_s|^2\biggr)^{1/2}. $$
The value $\overset{*}{\varkappa}$ of the minimum sharp constant in inequality (1) is found.
A class of generalized moduli of continuity is introduced which contains the moduli $\widetilde\omega_{a,r}(f,\delta):=\sup_{0\leqslant t\leqslant\delta}\|\Delta_{a^{r-1}t}\dotsb \Delta_{at}\Delta_{t}f\|_2$, with even $a$. The relation $\varkappa=\overset{*}\varkappa$ is proved in this class for all $\delta\geqslant\pi/n$.

UDC: 517.518.8

MSC: 41A17

Received: 14.06.2002 and 10.11.2003

DOI: 10.4213/sm838


 English version:
Sbornik: Mathematics, 2004, 195:8, 1073–1115

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025