RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 4, Pages 131–148 (Mi sm8391)

This article is cited in 2 papers

Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala

Abstract: This paper is concerned with series of the form
$$ \Phi(\theta)=A_\Phi(\theta)+\sin\theta\sum_{k=1}^\infty\varphi_k\sin k\theta, $$
where $\Phi(\theta)$ is an even $2\pi$-periodic function with finite values $\Phi(0)$ and $\Phi(\pi)$,
\begin{gather*} A_\Phi(\theta)=\frac{\Phi(0)+\Phi(\pi)}{2}+\frac{\Phi(0)-\Phi(\pi)}{2}\cos\theta, \qquad \varphi(\theta)=\Phi(\theta)-A_\Phi(\theta), \\ \varphi_k=\frac{2}{\pi}\int_0^\pi\varphi(t)\frac{\sin kt}{\sin t}\,dt. \end{gather*}
Series of this type appear as a particular case of more general special series in ultraspherical Jacobi polynomials, which were first introduced and studied by the author. Partial sums of the form $\Pi_n(\Phi)=\Pi_n(\Phi,\theta) =A_\Phi(\theta)+\sin\theta\sum_{k=1}^{n-1}\varphi_k\sin k\theta$ are shown to have a number of important properties, which give them an advantage over trigonometric Fourier sums of the form $S_n(\Phi,\theta)=\frac{a_0}{2}+\sum_{k=1}^na_k\cos k\theta$. Approximation properties of Fejér- and de la Valleé-Poussin-type means for the partial sums $\Pi_n(\Phi,\theta)$ are studied.
Bibliography: 7 titles.

Keywords: special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$, Fejér means, de la Valleé-Poussin means, approximation properties.

UDC: 517.538

MSC: Primary 41A17; Secondary 42C10, 46E30, 46E35

Received: 02.06.2014 and 28.11.2014

DOI: 10.4213/sm8391


 English version:
Sbornik: Mathematics, 2015, 206:4, 600–617

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024