RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2016 Volume 207, Number 6, Pages 3–26 (Mi sm8470)

This article is cited in 8 papers

Hermite-Padé approximation of exponential functions

A. V. Astafieva, A. P. Starovoitov

Francisk Skorina Gomel State University, Belarus

Abstract: The paper is concerned with diagonal Hermite-Padé polynomials of the first kind for the system of exponentials $\{e^{\lambda_jz}\}_{j=0}^k$ with arbitrary distinct complex parameters $\{\lambda_k\}_{j=0}^k$. An asymptotic formula for the remainder term is established and the location of the zeros is described. For real parameters the asymptotics are found and the extremal properties are described. The theorems obtained supplement the well-known results due to Borwein, Wielonsky, Saff, Varga and Stahl.
Bibliography: 43 titles.

Keywords: system of exponentials, Padé polynomials, Hermite-Padé polynomials, asymptotic equalities, the Laplace method, the saddle-point method.

UDC: 517.538.52+517.538.53+517.518.84

MSC: 41A21

Received: 08.01.2015 and 20.03.2016

DOI: 10.4213/sm8470


 English version:
Sbornik: Mathematics, 2016, 207:6, 769–791

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025