RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 11, Pages 113–130 (Mi sm8474)

This article is cited in 23 papers

On centres of relatively free associative algebras with a Lie nilpotency identity

A. V. Grishina, S. V. Pchelintsevb

a Moscow State Pedagogical University
b Financial University under the Government of the Russian Federation, Moscow

Abstract: We study central polynomials of a relatively free Lie nilpotent algebra $F^{(n)}$ of degree $n$. We prove a product theorem, which generalizes the well-known results of Latyshev and Volichenko. We construct generalized Hall polynomials, by using which we prove that the core centre of the algebra $F^{(n)}$ is nontrivial for any $n\geqslant 5$. We obtain a number of special results when $n=5$ and $6$.
Bibliography: 27 titles.

Keywords: Lie nilpotency identity, centre of an algebra, core polynomial, proper polynomial, extended Grassmann algebra.

UDC: 512.552.4

MSC: Primary 16R10; Secondary 15A75, 16S10

Received: 13.01.2015

DOI: 10.4213/sm8474


 English version:
Sbornik: Mathematics, 2015, 206:11, 1610–1627

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025