RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2016 Volume 207, Number 4, Pages 15–46 (Mi sm8491)

This article is cited in 8 papers

The annulus principle in the existence problem for a hyperbolic strange attractor

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University

Abstract: A certain special class of diffeomorphisms of an ‘annulus’ (equal to the Cartesian product of a ball in $\mathbb R^k$, $k\geqslant 2$, and a circle) is investigated. The so-called annulus principle is established, that is, a list of sufficient conditions ensuring that each diffeomorphism in this class has a strange hyperbolic attractor of Smale-Williams solenoid type is given.
Bibliography: 20 titles.

Keywords: annulus principle, hyperbolic attractor, invariant foliation, solenoid, topological mixing.

UDC: 517.926

MSC: 37D45

Received: 16.02.2015

DOI: 10.4213/sm8491


 English version:
Sbornik: Mathematics, 2016, 207:4, 490–518

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024