RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 11, Pages 53–74 (Mi sm85)

Rational approximation of functions of several variables with finite Hardy variation

A. P. Bulanov

Obninsk State Technical University for Nuclear Power Engineering

Abstract: The rate of rational approximation of functions of $N$ variables with given modulus of continuity and bounded Hardy variation on the unit N-cube $[0,1]^N$ is considered. In particular, if a function $f(x)$ on $[0,1]^N$ has bounded Hardy variation and $f \in\operatorname{Lip}\alpha$, $0<\alpha<1$ then it can be seen from the central result of this paper that
$$ R_n(f,[0,1]^N)\leqslant C\frac{\ln^2 n}n\,. $$


UDC: 517.51

MSC: 41A20, 41A25

Received: 05.07.1994


 English version:
Sbornik: Mathematics, 1995, 186:11, 1599–1620

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024