RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2015 Volume 206, Number 10, Pages 127–176 (Mi sm8506)

This article is cited in 57 papers

A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics

V. V. Fokicheva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A new class of integrable billiard systems, called generalized billiards, is discovered. These are billiards in domains formed by gluing classical billiard domains along pieces of their boundaries. (A classical billiard domain is a part of the plane bounded by arcs of confocal quadrics.) On the basis of the Fomenko-Zieschang theory of invariants of integrable systems, a full topological classification of generalized billiards is obtained, up to Liouville equivalence.
Bibliography: 18 titles.

Keywords: integrable system, billiard, Liouville equivalence, Fomenko-Zieschang invariant.

UDC: 517.938.5

MSC: Primary 37D50, 37J35; Secondary 70E40

Received: 12.03.2015 and 03.07.2015

DOI: 10.4213/sm8506


 English version:
Sbornik: Mathematics, 2015, 206:10, 1463–1507

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024