RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2016 Volume 207, Number 3, Pages 93–110 (Mi sm8512)

This article is cited in 8 papers

On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges

Yu. L. Pavlov, E. V. Khvorostyanskaya

Institute of Applied Mathematical Research, Karelian Research Centre, RAS, Petrozavodsk

Abstract: A model of a configuration graph on $N$ vertices is considered in which the degrees of the vertices are distributed identically and independently according to the law $\mathbf P\{\xi=k\}=k^{-\tau}-(k+1)^{-\tau}$, $k=1,2,\dots$, $\tau>0$, and the number of edges is no greater than $n$. Limit theorems for the number of vertices of a particular degree and for the maximum vertex degree as $N,n\to\infty$ are established.
Bibliography: 18 titles.

Keywords: configuration graph, limit distribution, the number of vertices of a particular degree, the maximum vertex degree.

UDC: 519.175.4

MSC: 05C80

Received: 18.03.2015 and 29.06.2015

DOI: 10.4213/sm8512


 English version:
Sbornik: Mathematics, 2016, 207:3, 400–417

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025